STUDY OF THE CONVERSION OF CaSO₄ TO CaCO₃ WITHIN THE CaSO₄ + Na₂CO₃ = CaCO₃ + Na₂SO₄ FOUR-COMPONENT WATER–SALT SYSTEM

Dimitar TRENDAFELOV, Christomir CHRISTOV, Christo BALAREW and Aneta KARAPETKOVA

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

> Received April 27, 1995 Accepted July 15, 1995

The Pitzer ion-interaction model was employed to predict the conversion in the title quaternary water–salt system. The thermodynamic solubility products (K_s^0) were determined and the conversion of CaSO₄ to CaCO₃ in the CaSO₄ + Na₂CO₃ = CaCO₃ + Na₂SO₄ system was predicted. The standard molar Gibbs free energy $\Delta_r G^0$ of the conversion reaction was calculated to be -23.62 kJ mol⁻¹. A 98% degree of conversion of CaSO₄ was achieved by using calcium sulfate isolated from sea salt production waste brines. Suitable conditions were found for obtaining CaCO₃ exhibiting a high dispersity and whiteness.

All the four ternary subsystems of the $CaSO_4 + Na_2CO_3 = CaCO_3 + Na_2SO_4$ quaternary water-salt system have been described in the literature over a wide temperature range. A field of equilibrium crystallization of the 2 NaSO₄ . Na₂CO₃ double salt, which actually is a phase with a varying composition¹, has been identified in the Na₂SO₄-Na₂CO₃-H₂O system. Crystallization of double salts of the *k* Na₂SO₄ . *l* CaCO₃ . *m* H₂O (ref.²) and Na₂CO₃ . CaCO₃ . *n* H₂O (ref.³) types (*k* = 1, 2; *l* = 1, 5; *m* = 0, 1, 2; *n* = 2, 5) has been established in the Na₂SO₄-CaCO₃-H₂O and Na₂CO₃-CaCO₃-H₂O ternary systems. The scarce data available in the literature on the CaSO₄-CaCO₃-H₂O system indicate the occurrence of a wide crystallization field of CaCO₃ (ref.⁴). The CaSO₄ + Na₂CO₃ = CaCO₃ + Na₂SO₄ quaternary system has been studied by physico-chemical methods^{5,6}, and conversion of CaSO₄ to CaCO₃ has been observed.

The purpose of the present work was to obtain high-quality $CaCO_3$ possessing a high dispersity and high whiteness, using $CaSO_4$ isolated from waste brine emerging from the production of sea salt.

EXPERIMENTAL

Conversion in the $CaSO_4 + Na_2CO_3 = CaCO_3 + Na_2SO_4$ four-component water-salt system was achieved by using $CaSO_4 \cdot 2 H_2O$ isolated from waste brine from the production of sea salt. The conditions were as follows: duration of interaction, 4 h; temperature, 25 °C; reaction vessel, glass.

The reagents were ground before use. In order to remove Fe_2O_3 impurities, some of the $CaSO_4$ samples were treated with 5% H_2SO_4 , filtered out and dried at 60 °C. The reagent mixture was added to distilled water in small portions with intense stirring. The Na_2CO_3 to $CaSO_4$ molar ratios lay within the limits of 1 + 1.1. The use of excess Na_2CO_3 over $CaSO_4$ served obtaining a basic medium (pH 11) in which the conversion of $CaSO_4$ proceeds nearly completely.

The precipitated reaction product was washed with distilled water and alcohol and dried in air, and analyzed for CaCO₃ by the method of residual titration (Bulgarian State Standard 1820-71). The procedure is as follows: A weighed amount of the product is dissolved in distilled water, several drops of a 0.1% phenolphthaleine solution are added, and the solution is titrated with 1 M HCl to durable decolouration, after which excess HCl is added and the whole is heated gently on a flame to remove CO₂. Several drops of a 0.1% methyl orange solution are added, and the excess acid is titrated with 1 M NaOH.

A 98% degree of conversion of $CaSO_4$ to $CaCO_3$ was attained, while Na_2SO_4 remained in the solution. Colourless crystals of Na_2SO_4 . 10 H₂O were obtained by isothermal evaporation of the solution.

The dispersion and degrees of whiteness and yellowness of the CaCO₃ product were examined. The particle size distribution (in microns) was established by the sieve analysis method using a MALVERN 3600 apparatus, the colour measurements were made with an Elropho 2000 – Patacolor. The results are summarized in Table I. The quality of the product was found to be affected by the pre-treatment of the samples (grinding and washing with dilute H_2SO_4).

The best results were obtained if the two reagents had been ground but $CaSO_4 \cdot 2 H_2O$ had not been pre-treated with sulfuric acid. The product so obtained is first quality as far as its dispersion and whiteness are concerned (Bulgarian State Standard 1829-71) and can be used as filler in the cellulose industry.

The conversion of $CaSO_4$ to $CaCO_3$ was also evaluated when using sodium bicarbonate instead of carbonate. Even though a large excess of NaHCO₃ was added, the conversion degree was considerably lower (<90%) due to the buffer effect of this compound. Moreover, this conversion route is inconvenient because NaHCO₃ is considerably more expensive than Na₂CO₃.

TABLE I Quantitative characteristics of the $CaCO_3$ obtained; *d* mean bulk diameter of particles

Exp. No.	$\begin{array}{c} CaSO_4 \ . \ 2 \ H_2O \ treated \\ with \ 5\% \ H_2SO_4(aq) \end{array}$	<i>d</i> , µm	Degree of whiteness, %	Degree of yellowness, %
1^a	no	12.45	93.14	1.03
2^b	no	10.03	94.18	1.43
3^b	yes	35.44	87.55	4.42
4^b	yes	31.89	84.00	3.25
5^c	yes	31.34	86.78	4.47

 ${}^{a} m_{\text{Na}_2\text{CO}_3}/m_{\text{CaSO}_4} = 1$; ${}^{b} m_{\text{Na}_2\text{CO}_3}/m_{\text{CaSO}_4} = 1.1$; c conversion of CaSO₄ to CaCO₃ is performed with sodium bicarbonate.

THERMODYNAMIC INVESTIGATION OF THE ${\rm CaSO_4} + {\rm Na_2CO_3} = {\rm CaCO_3} + {\rm Na_2SO_4}$ system using the pitzer model

According to a rule formulated by Van't Hoff⁷, the equilibrium in a quaternary watersalt system is shifted towards the formation of that pair of salts whose sum of solubility products (K_s^0) is smaller. For a theoretical examination of the conversion of CaSO₄ to CaCO₃ in the above quaternary system we simulated thermodynamically the Na₂CO₃-H₂O, Na₂SO₄-H₂O and CaSO₄-H₂O binary solutions at 25 °C using the Pitzer ion-interaction model^{8,9}. The applicability of this model to the calculation of the thermodynamic characteristics of binary and multicomponent electrolyte solutions has been proved by many authors¹⁰⁻¹⁶. The ultimate purpose of the simulation was obtaining the thermodynamic solubility products of the crystalline hydrates (Na₂CO₃. 10 H₂O, Na₂SO₄. 10 H₂O and CaSO₄. 2 H₂O) formed in the above saturated binary solutions.

The Pitzer binary parameters of the systems were taken from refs^{16,17} (Table II). The decisive criterion for the choice of parameters was their applicability within the widest possible concentration range with a low standard deviation (σ).

Using the values of the binary parameters we calculated the activity coefficients (γ_{\pm}) and the water activity (a_w) in the saturated electrolyte solutions (with molality *m*). The values obtained are presented in Table III. Based on the overall reactions,

$$Na_2CO_3 \cdot 10 H_2O = 2 Na^+ + CO_3^{2-} + 10 H_2O$$
 (A)

$$Na_2SO_4 \cdot 10 H_2O = 2 Na^+ + SO_4^{2-} + 10 H_2O$$
 (B)

$$CaSO_4 \cdot 2 H_2O = Ca^{2+} + SO_4^{2-} + 2 H_2O$$
, (C)

System	$\beta^{(0)}$	$\beta^{(1)}$	$\beta^{(2)}$	c ^φ	m ^{max}	σ
Na ₂ CO ₃ -H ₂ O ^a	0.05306	1.29262	_	0.00094	2.75	0.00257
Na ₂ SO ₄ -H ₂ O ^b	0.04604	0.93350	_	-0.00483	1.75	0.00112
$CaSO_4-H_2O^b$	0.20000	3.7762	-58.388	-	0.02	0.00460

Pitzer binary parameters at 25 °C; σ is the standard deviation of the osmotic coefficients

^a Ref.¹⁶; ^b ref.¹⁷.

TABLE II

we calculated the logarithm of the thermodynamic solubility product of the crystalline hydrates. For Na₂CO₃. 10 H₂O and Na₂SO₄. 10 H₂O:

$$\ln K_{\rm s}^0 = \ln \left(4m^3 \gamma_{\pm}^3 a_{\rm w}^{10}\right) \,, \tag{1}$$

and for $CaSO_4 \cdot 2 H_2O$:

$$\ln K_{\rm s}^0 = \ln \left(m^2 \gamma_{\pm}^2 a_{\rm w}^2 \right) \ . \tag{2}$$

The results are given in Table III. Due to the very low solubility of CaCO₃ in water, no isopiestic data exist concerning the dependence of the water activity on the concentration of the CaCO₃-H₂O solution. For that reason, we were unable to determine the binary parameters of interionic interaction and calculate the thermodynamic solubility product of CaCO₃. The ln K_s^0 value for CaCO₃ given in Table III was taken from ref.¹⁸. It is clear that the sum of the ln K_s^0 values is much lower for CaCO₃ and Na₂SO₄. 10 H₂O than for CaSO₄. 2 H₂O and Na₂CO₃. 10 H₂O, so that, according to the Van't Hoff rule, CaSO₄ should dissolve and CaCO₃ precipitate in the quaternary system under consideration.

In agreement with the conditions of phase and chemical solid-liquid equilibria in water-salt systems, the chemical potential of the liquid phase is equal to the chemical potential of the solid phase. Owing to this, the standard molar Gibbs free energy of reaction $\Delta_r G^0$ of solid CaSO₄. 2 H₂O with solid Na₂CO₃. 10 H₂O could be derived from the calculated activities of the components in their saturated binary solutions (Table III). A similar scheme was used to determine the $\Delta_r G^0$ values of the reaction of synthesis of the double salts from the corresponding simple salts^{10,11,13,15}. For the reaction

TABLE III

Calculated values of the logarithm of the thermodynamic solubility product K_s^0 ; m concentration of saturated binary solution; γ_{\pm} activity coefficient; a_w water activity

Salt composition	т	γ_{\pm}	$a_{ m w}$	$\ln K_{\rm s}^0$
Na ₂ CO ₃ . 10 H ₂ O	2.77	0.1734	0.8981	-1.889
Na ₂ SO ₄ . 10 H ₂ O	1.97	0.1548	0.9363	-2.834
CaSO ₄ . 2 H ₂ O	0.02	0.3042	0.9995	-10.205
CaCO ₃ ^{<i>a</i>}				-18.789

^a Ref.¹⁸.

$$CaSO_4 \cdot 2 H_2O(cr) + Na_2CO_3 \cdot 10 H_2O(cr) =$$

= CaCO_3(cr) + Na_2SO_4 \cdot 10 H_2O(cr) + 2 H_2O(l) (D)

the change in the standard molar Gibbs free energy is

$$\Delta_{\rm r}G^0 = RT[\ln a_{\rm CaCO_2} + \ln a_{\rm Na,SO_4.10\,H,O} + 2\ln a_{\rm H,O} - \ln a_{\rm CaSO_4.2\,H,O} - \ln a_{\rm Na,CO_3.10\,H,O}], (3)$$

where *a* is the activity of the salt in its saturated solution at 25 °C and $\ln a_{\rm H_2O} = 0$ (the activity of pure water is 1). The $\Delta_r G^0$ value so obtained is -23.62 kJ mol⁻¹.

This work has been financially supported by the Bulgarian Ministry of Science and Education, Project X-343.

REFERENCES

- 1. Kurnakov N., Makarov S.: Izv. IFKhA Akad. Nauk SSSR 4, 329 (1930).
- 2. Hill A., Wills J.: J. Am. Chem. Soc. 60, 1650 (1938).
- 3. Bury C., Redd R.: J. Chem. Soc. 1933, 1161.
- 4. Clark L., Hunter E.: J. Chem. Soc. 1935, 386.
- 5. Straub F.: Ind. Eng. Chem. 24, 917 (1932).
- 6. Leick J.: Z. Anal. Chem. 87, 417 (1932).
- 7. Van't Hoff J.: Zur Bildung ozeanischer Salzablagerungen, Bd. I und II. Verlag Vieweg und Sohn, Braunschweig 1909 (1905).
- 8. Pitzer K.: J. Phys. Chem. 77, 268 (1973).
- 9. Pitzer K.: J. Solution Chem. 4, 249 (1975).
- 10. Balarew C., Christov C., Valyashko V., Petrenko S.: J. Solution Chem. 22, 173 (1993).
- 11. Christov C., Balarew C., Petrenko S., Valyashko V.: J. Solution Chem. 23, 595 (1994).
- 12. Christov C., Petrenko S., Balarew C., Valyashko V.: J. Solution Chem. 23, 795 (1994).
- 13. Christov C., Balarew C.: J. Solution Chem., in press.
- 14. Christov C., Petrenko S., Balarew C., Valyashko V.: Monatsh. Chem. 125, 1371 (1994).
- 15. Christov C.: J. Chem. Thermodyn. 26, 1071 (1994).
- 16. Trendafelov D., Prangova D., Nishev M., Christov C.: C. R. Acad. Bulg. Sci. 48, 39 (1995).
- 17. Kim H., Frederick W.: J. Chem. Eng. Data 33, 177 (1988).
- 18. Drever J.: Geokhimia prirodnych vod, p. 56. Mir, Moscow 1985.